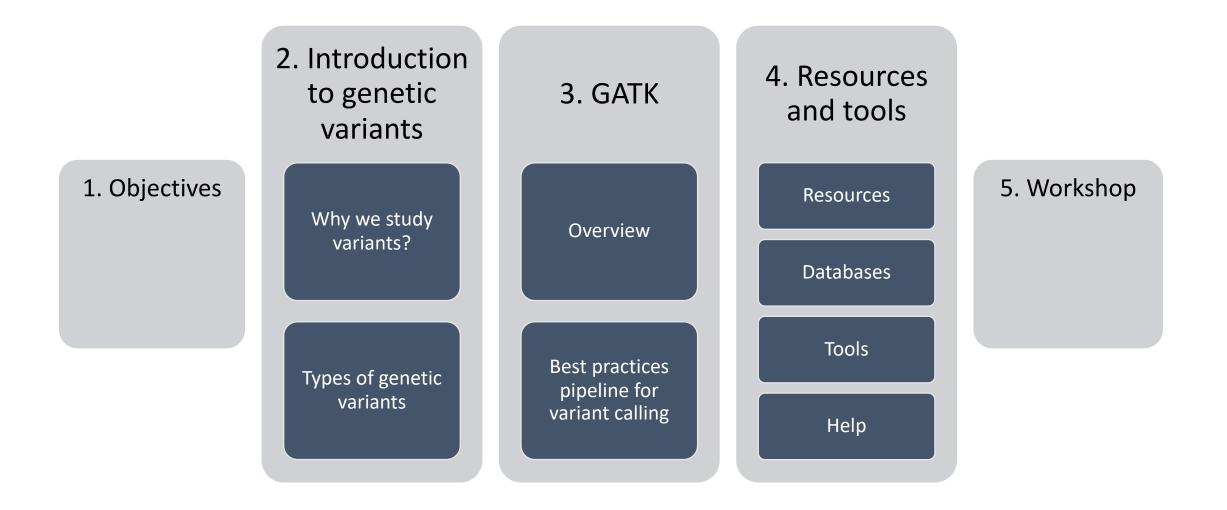


Variant calling using GATK


Khalid Mahmood

June 28, 2023

https://www.melbournebioinformatics.org.au/tutorials/tutorials/variant_calling_gatk1/variant_calling_gatk1/

Workshop overview

1. Objectives

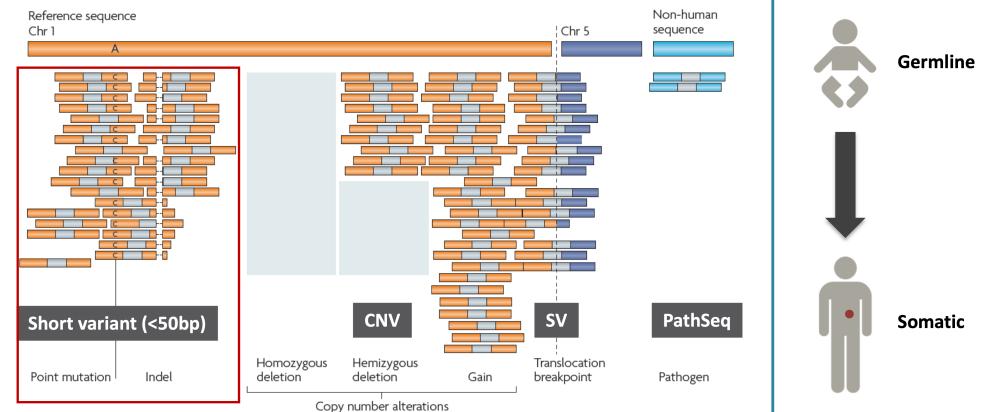
- We aim to cover:
 - Perform QC of sequencing data
 - Align raw reads to reference sequences
 - Perform alignment metric and generating a QC report
 - Prepare alignment data for variant calling
 - Identify simple variants using GATK HaplotypeCaller
 - Visualise simple variant data (VCF files)
 - Perform basic variant filtering

2. Introduction to genetic variants

- There are approximately 3 billion base pairs in the human genome.
- Humans share 99.5% of DNA with other humans.
- A **variant** is a difference between similar genomes.
- In most cases this means a difference between DNA sequences compared to a reference genome.
- In this context a variant is described by its location (genomic coordinates) and genetic change.
 - *e.g.* chr2 9834 A \rightarrow G

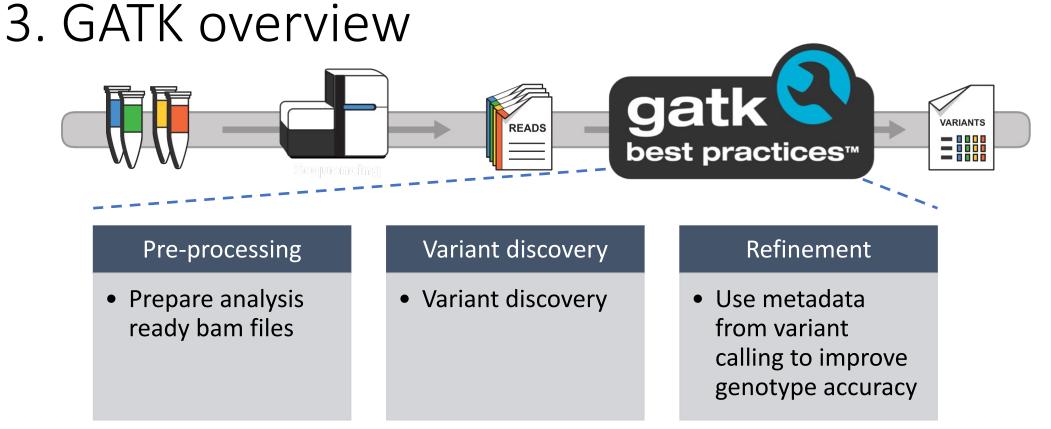
2. Introduction to genetic variants

There is high degree of similarity but the human genome is large ~3 billion nucleotides.


This results in approximately 4-5 million variants between any individual and the reference genome.

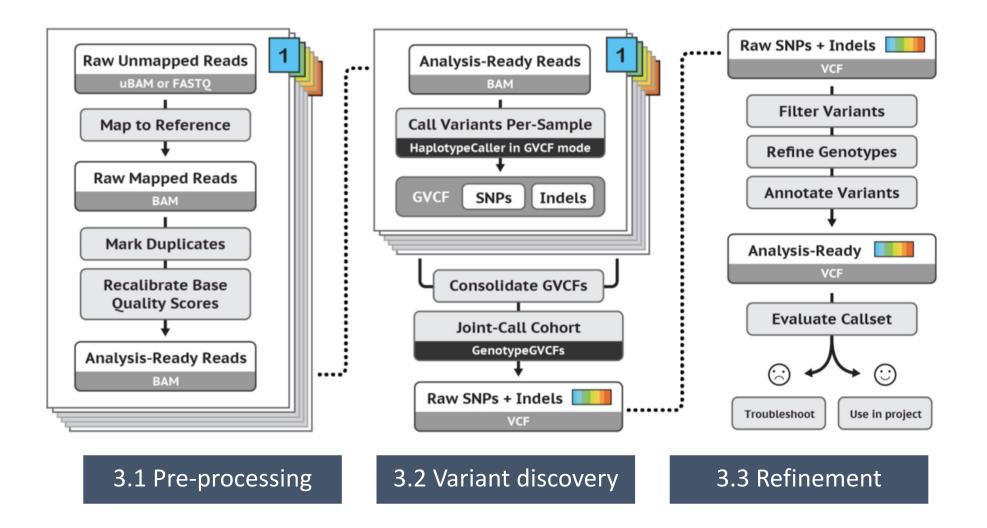
These, seemingly small number of variations likely explains a significant proportion of phenotypic diversity among humans.

2. Types of genetic variants


Types of genetic variants:

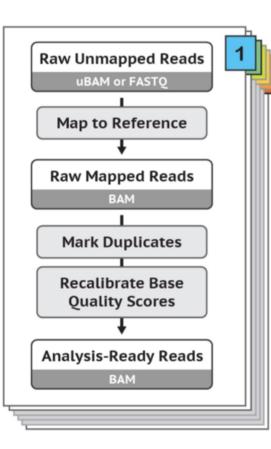
Focus of this workshop: Calling short germline variants

 Genome Analysis Toolkit (GATK): software package to analyze highthroughput sequencing data



3. GATK overview

- Download available from
- <u>https://github.com/broadinstitute/gatk/releases</u>
- Tutorial version: GATK 4.2.0.0
- Current version: GATK 4.4.0.0
- Explore GATK website gatk.broadinstitute.org
 - Tool index provides tools usage instructions
 - Technical documentation provides details on for example Algorithms
 - Forum provides access to Q&As and community discussions

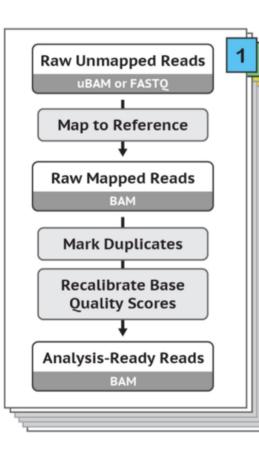


3. GATK Best practices pipeline

3.1 Pre-processing

- A sequencing experiment results in a large volume of sequencing reads
- Reads are not mapped to a reference
- Reads can contain errors and technical artifacts
- e.g. a molecule sequenced multiple times will result in duplicate reads
- We need to filter and prepare the reads and the alignment data ready for variant calling

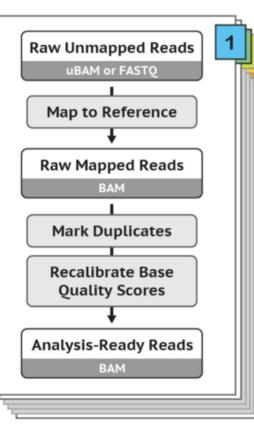
3.1 Map to reference



• BWA-MEM

- bwa mem -M -t 4 -R "@RG\tID:SRR622461.7\tSM:NA12878\tLB:ERR194147\tPL:ILLUMINA" <reference> sample_1.fastq sample_2.fastq > alignment.sam
- -M: inserts a tag to the alignment if non-primary alignment (required by GATK)
- -R: read group
- -t: threads or number of cpus
- <reference>: path to reference genome in fasta format and the BWA index files

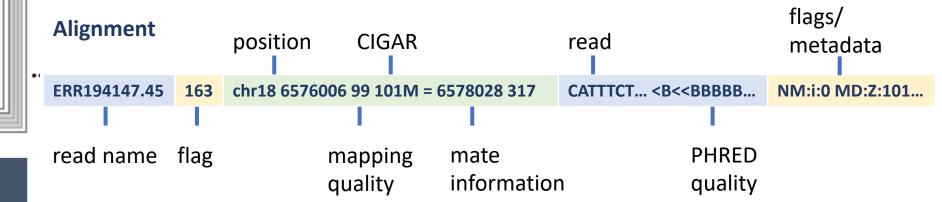
3.1 Map to reference


• BWA-MEM

- bwa mem -M -t 4 -R "@RG\tID:SRR622461.7\tSM:NA12878\tLB:ERR194147\tPL:ILLUMINA" <reference> sample_1.fastq sample_2.fastq > alignment.sam
- -R: read group contains information such as the sample name, library and flow cell.
- Refers to a set of reads generated from a single sequencing run in particular machine

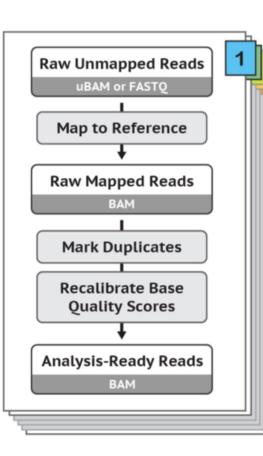
@RG ID:SRR622461.7 SM	:NA12878 LB:ERR194	147 PL:ILLUMINA
-----------------------	--------------------	-----------------

3.1 Map to reference


Pre-processing

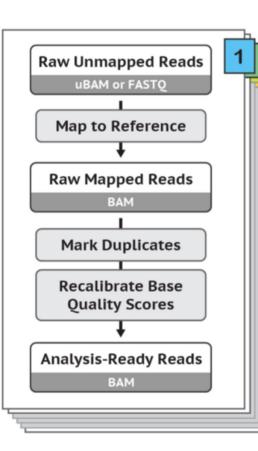
- Output is a SAM/BAM file.
- SAM file specifications: https://samtools.github.io/hts-specs/SAMv1.pdf

Header


@HD VN:1.5 SO:coordinate@RG ID:SRR622461.7 SM:NA12878 LB:ERR194147 PL:ILLUMINA

@PG ID:bwa PN:bwa VN:0.7.17-r1188 CL:bwa mem -M -t 4 -R

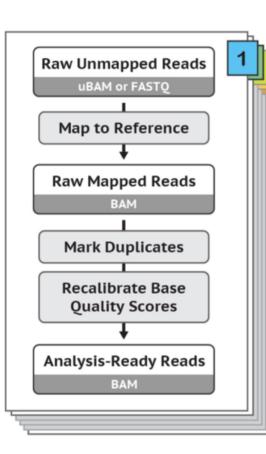
3.1 Mark duplicates


Pre-processing

Mark Duplicates

- Identify reads that are non-independent measurement of sequence fragment
 - Same template of DNA sampled multiple times
 - PCR duplicates
- High sequence identify
- Align to same reference position

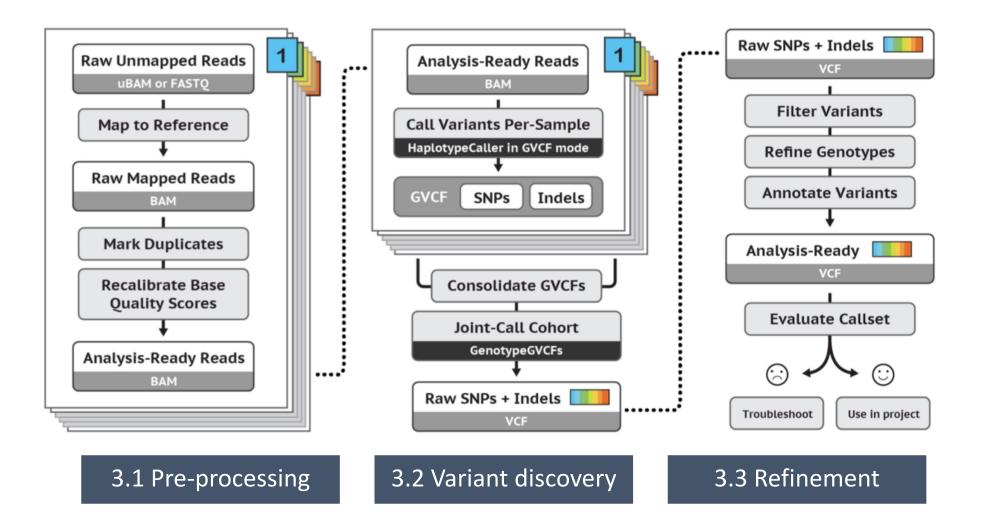
3.1 Mark duplicates



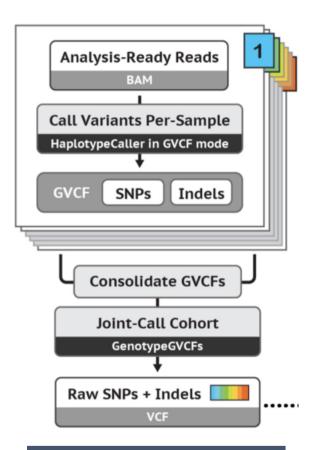
Mark Duplicates

- gatk MarkDuplicates -I sample.bam -O sample.dedup.bam -M sample.dedup.metrics.txt
- Recommended to be performed on reads per library or lane
- SAM flags are used to mark reads as duplicates
- Downstream GATK tools depend on these flags to assess support for variants and alleles

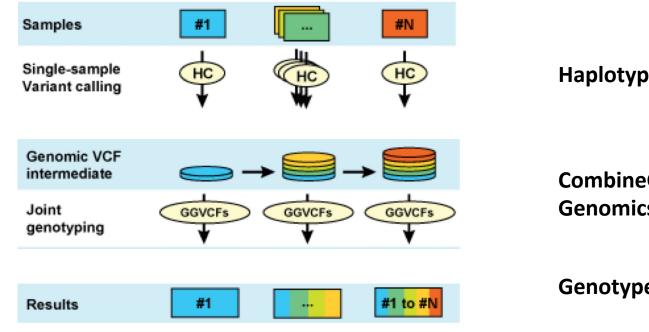
3.1 Base recalibration



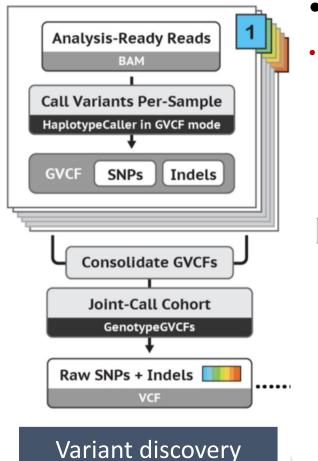
Pre-processing


Base recalibration

- gatk tools BaseRecalibrator and ApplyRecalibration
- Performed per-sample to detect and correct for patterns of systematic errors in base quality scores.
- Evidenced by calculating metrics based on known variant locations
- Important for building reliable evidence for downstream analysis.

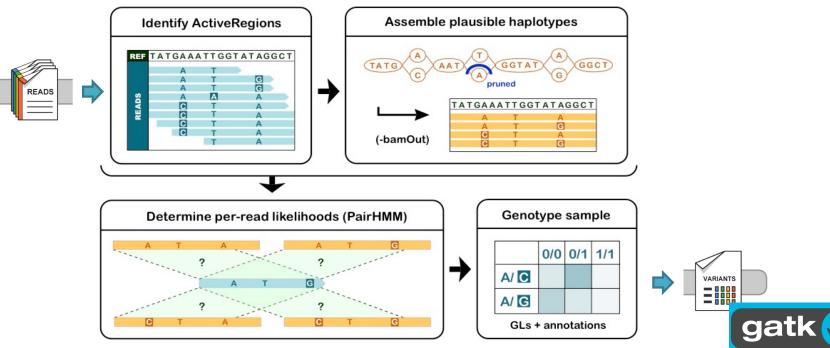

3. GATK Best practices pipeline

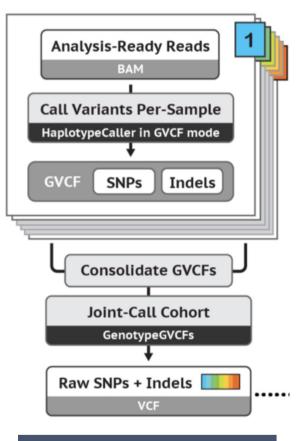
Software


HaplotypeCaller

CombineGVCFs/ GenomicsDBImport

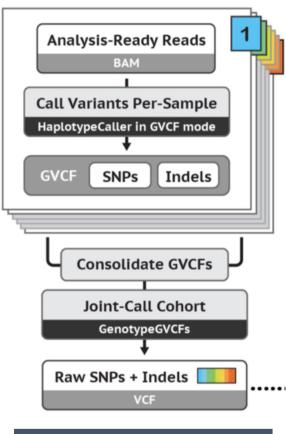
GenotypeGVCFs


Variant discovery



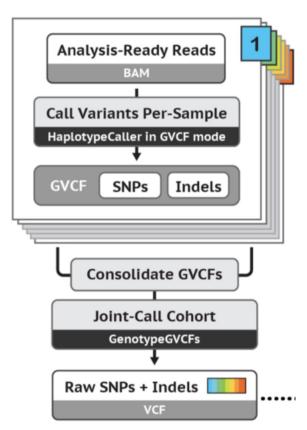
HaplotypeCaller

gatk --java-options "-Xmx4g" HaplotypeCaller -R
 <reference.fa> -I input.bam -O output.g.vcf.gz -ERC GVCF


Variant discovery

CombineGVCFs

- gatk CombineGVCFs R <reference.fa> --variant sample1.g.vcf.gz --variant sample2.g.vcf.gz -0 cohort.g.vcf.gz
- Combine per samples gVCF files (produced by HaplotypeCaller) into a multi-sample gVCF file.


Variant discovery

GenotypeGVCFs

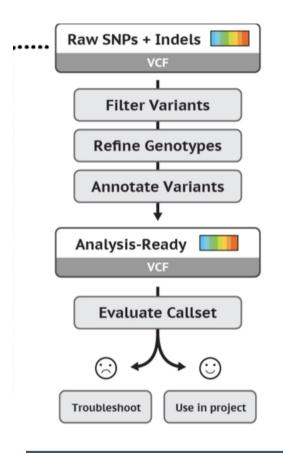
- gatk --java-options "-Xmx4g" GenotypeGVCFs -R <reference.fa>
 -V cohort.g.vcf.gz -0 output.vcf.gz
- Combine per samples gVCF files (produced by HaplotypeCaller) into a multi-sample gVCF file.

- Output is a VCF file
- VCF file specifications <u>https://samtools.github.io/hts-specs/VCFv4.2.pdf</u>

Header

#fileformat=VCFv4.2
##FILTER=<ID=PASS,Description="All filters passed">
##contig=<ID=1,length=249250621>
##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">

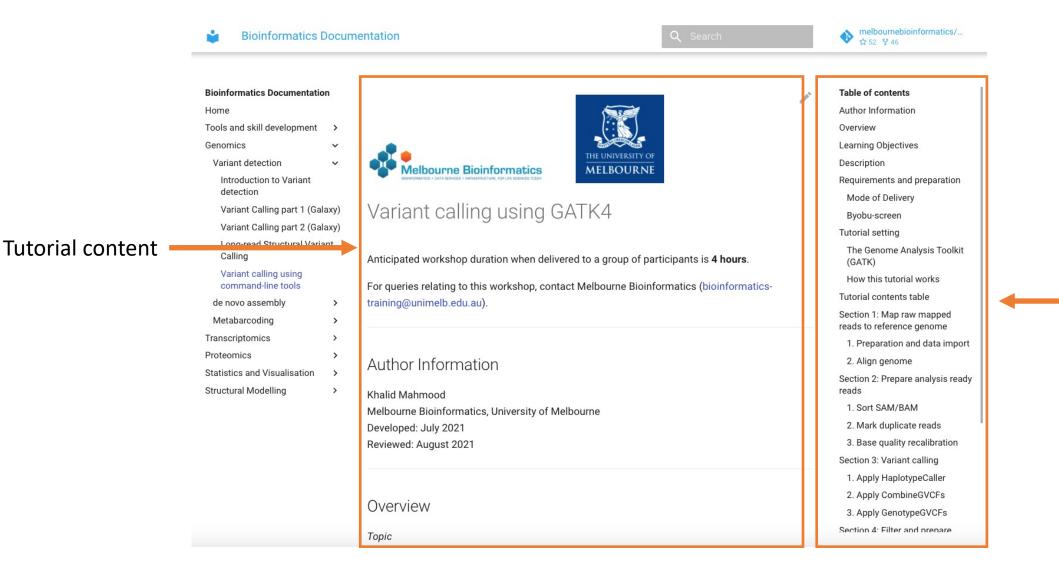
Variant record


#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	Sample1
1	567376		G	A	146.3	PASS	AC=1;DP=55	GT:AD:DP	0/1:30,25:55

Variant discovery

3.3 Variant Refinement

Refinement


- Variant callers are sensitive
- The aim here is to identify potential false positives and apply filters to remove those less likely to be real variants. Strategies include:
- 1. Variant quality score recalibration (using known sites)
- 2. Hard filtering on quality criteria
- 3. Annotation features

Variant record

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	Sample gatk
1	567376		G	А	146.3	PASS	AC=1;DP=55	GT:AD:DP	0/1:30,25.55

Tutorial navigation

Tools and skill development 2. Apply CombineGVCFs Genomics Variant detection into a single multi-sample GVCF file. Introduction to Variant detection We have pre-processed two additional samples (NA12891 and NA12892) up to the Variant Calling part 1 (Galaxy) HaplotypeCaller step (above). Let's first copy the GVCF files to the output directory. Variant Calling part 2 (Galaxy) Long-read Structural Variant #let's make sure that we are in the apropriate directory Calling cd Variant calling using command-line tools cp /mnt/shared_data/NA12891.g.vcf.gz* output/. de novo assembly cp /mnt/shared_data/NA12892.g.vcf.gz* output/. gatk -- java-options "-Xmx7g" CombineGVCFs \ -R reference/hg38/Homo_sapiens_assembly38.fasta \ -V output/NA12878.g.vcf.gz Statistics and Visualisation -V output/NA12891.g.vcf.gz \ Structural Modelling -V output/NA12892.g.vcf.gz -L chr20 -0 output/cohort.g.vcf.gz Let's look at the combined GVCF file less output/cohort.g.vcf.gz row Now that we have a merged GVCF file, we are ready to perform genotyping. 3. Apply GenotypeGVCFs GenotypeGVCFs gatk -- java-options "-Xmx7g" GenotypeGVCFs \ -R reference/hg38/Homo_sapiens_assembly38.fasta -V output/cohort.g.vcf.gz \ -L chr20 \ -0 output/output.vcf.gz Information

Command and output blocks '#' comments - do not run

Metabarcoding Transcriptomics Proteomics

The CombineGVCFs tool is applied to combine multiple single sample GVCF files, merging them

Work your way down to the variant records? How many samples do you see in the VCF file? Hint: look at the header

Visualisations: VCF file

Overview Learning Objectives Description Requirements and preparation Mode of Delivery Byobu-screen Tutorial setting The Genome Analysis Toolkit (GATK) How this tutorial works Tutorial contents table Section 1: Map raw mapped reads to reference genome 1. Preparation and data import 2. Align genome Section 2: Prepare analysis ready reads 1. Sort SAM/BAM 2. Mark duplicate reads 3. Base quality recalibration Section 3: Variant calling 1. Apply HaplotypeCaller 3. Apply GenotypeGVCFs Section 4: Filter and prepare analysis ready variants 1. Variant Quality Score Recalibration 2. Additional filtering 3. Final analysis ready VCF Section 5: Exporting variage data and visualisation 1. VariantsToTable 2. HTML report

>

>

Interactive sections Notes, hints, exercises

Table of contents

Author Information Overview Learning Objectives Description Requirements and preparation Mode of Delivery Byobu-screen Tutorial setting The Genome Analysis Toolkit (GATK) How this tutorial works

Tutorial contents table

Section 1: Map raw mapped reads to reference genome

1. Preparation and data import

2. Align genome

Section 2: Prepare analysis ready reads

1. Sort SAM/BAM

Mark duplicate reads

3. Base quality recalibration

Section 3: Variant calling

1. Apply HaplotypeCaller

2. Apply CombineGVCFs

Apply GenotypeGVCFs

Section 4: Filter and prepare analysis ready variants

1. Variant Quality Score Recalibration

2. Additional filtering

3. Final analysis ready VCF file

Section 5: Exporting variant data and visualisation

VariantsToTable

HTML report

Introductory material Tutorial delivery and some instructions

Workshop content:

- 5 sections
- Each section covers a stage in the variant calling pipeline
- Each section has a text explain the process and links to relevant material
- Sections have multiple steps. Mostly have an input and an expected output file.
- This is a pipeline: input to a step is the output from a previous step

Melbourne Research Cloud

Workshop computers

- We will be conducting the workshop on virtual machines
- Hosted on the University of Melbourne Research Cloud service and the ARDC Nectar Research Cloud infrastructure.
- Infrastructure for development and setup of the workshops machines by Simon Gladman

Workshop computers

- Each participant should have a username and a password
- Each participant will be assigned a log in to one of the VM machines:
 - Follow the google sheet link for more details
- Configuration:

Log on to the VMs

• Open a terminal window and on the command prompt type and enter:

			● ● ● alpha@test-i2: ~										て第4	
								alı	pha@test-i	2: ~ (ssh)				¥1 +
						-								0.007
<pre>khalidm~\$ ssh alpha@115.</pre>	146.84.252	1		0.09	-	Ļ			.0%]	9 [I		0.7%]	13 [0.0%]
alpha@115.146.84.252's p	assword: ®	2 L		0.09	-	Ļ			. 0%]	10 [0.0%]	14 [0.7%]
arbumant2.140.04.222 2 b	ussworu.	3		0.09	-	Ľ			. 0%]	11 [0.0%]	15 [0.0%]
1		4 [0.09	6] <mark>8</mark>	Ľ			.0%]	12 [0.0%]	16 E	0.0%]
		Mem						2M/31			29, 14 thr	·	<u> </u>	
		Swp[l	Swp[1 1.01M/92.9M] Load average: 0.01 0.03 0.									.00		
	alpha@test-i2: ~									Uptime:	1 day, 01	L:16:07		
	alpha@test-i2: ~ (ssh)													
khalidm~\$ ssh alpha@115.146.84.252		PID U	JSER P	'RI NI	I VIRT	RES	SHR S	CPU%	MEM%	TIME+	Command			
alpha@115.146.84.252's password:		40563 a	alpha	20 0	0 10516	3920	3276 R	0.0	0.0	0:00.10) htop			
		706 m	oot	20 0	389M	<mark>21</mark> 892	10164 S	0.0	0.1	0:27.49	/usr/bin/	/python3 /	/usr/bin/f	ail2ban-server -xf sta
Nectar Ubuntu 20.04.3 LTS (Focal Fossa)		705 r	oot	20 0	389M	<mark>21</mark> 892	10164 S	0.0	0.1	0:22.67	′/usr/bin/	/python3 /	/usr/bin/f	ail2ban-server -xf sta
Image details and information is availab	lo at:	644 r	oot	20 0	389M	<mark>21</mark> 892	10164 S	0.0	0.1	0:55.68	/usr/bin/	/python3 /	/usr/bin/f	ail2ban-server -xf sta
<pre>Image details and information is available at: https://support.ehelp.edu.au/support/solutions/articles/6000106269</pre>		1 r	oot	20 0) 164M	12 368	<mark>8</mark> 372 S	0.0	0.0	0:08.42	? /lib/syst	emd/syst	emdsyste	emdeserialize 27
		651 r	oot	20 0	232M	7724	6500 S	0.0	0.0	0:02.81	/usr/lib/	accounts	service/ac	counts-daemon
		677 r	oot	20 0	232M	7724	6500 S	0.0	0.0	0:00.05	i /usr/lib/	accounts	service/ac	counts-daemon
* Documentation: https://help.ubuntu.c	mc	622 r	oot	20 0	232M	7724	6500 S	0.0	0.0	0:03.25	;/usr/lib/	accounts	service/ac	counts-daemon
* Management: https://landscape.can		624 r	oot	20 0	9 412	3020	2760 S	0.0	0.0	0:00.18	/usr/sbir	n∕cron -f		
* Support: https://ubuntu.com/advantage		625 m	nessagebu	20	7760	4432	3552 S	0.0	0.0	0:01.15	/usr/bin/	/dbus-daer	nonsyste	emaddress=systemd:
Last login: Tue Sep 14 08:16:18 2021 fro	n 124.188.77.12	638 r	Ų	20	81928	3644							ncefore	
(gatk4) alpha@test-i2:~\$											F9 <mark>Kill</mark> F1			→

Useful Linux commands

- Autofill on command line: Tab key
- Abort command: Ctrl-c
- List contents of a directory: 1s -1
- What's the path to my current directory: **pwd**
- Change directory: cd <path/to/destination>
- Create a directory: mkdir <directory name>
- Copy a file: cp <source file> <destination path/name>
- Remove a directory: rmdir <directory name>
- Remove a file: rm <file name>
- Rename/move a file (this is not copying a file): mv <source file> <destination file>

- Open a text editor: **nano**
- Print file content (small files): cat <file name>
- Print file content (quick view): less <file name>
- Print file content (quick view/first 10 lines of a file): head <file name>
- Print file content (quick view/last 10 lines of a file): tail <file name>
- curl or wget: download a file from a URL (you will see this in other QIIME2 tutorials)
- Documentation for a command line tool: try man <tool name> OR <command name> --help

Workshop data

- Primary data: paired-end sequencing reads from the chr20
 - chr20:2677705-6631126
- Whole genome sequencing data
 - Female
 - Utah resident (European ancestry)
 - 1000 genomes project (NA12878)
- Other data from
 - A male and female
 - Utah resident (European ancestry)
 - 1000 genomes project (NA12891 and NA12892)

Byrska-Bishop, Marta et al. "High coverage whole genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios". *bioRxiv*. (2021).

Byobu-screen

- A terminal multiplexer or a tool to to create multiple 'windows' in a single screen
- Improves stability of terminal sessions when connected to a remove computer
- List screen sessions: byobu-screen -ls
- Start new session: byobu-screen -S workshop
- Detach from screen to original window: Ctrl-a-d
- More details:
- https://www.melbournebioinformatics.org.au/tutorials/tutorials/variant_calling_gatk1/v ariant_calling_gatk1/#byobu-screen

Workshop

https://www.melbournebioinformatics.org.au/tutorials/tutorials/variant_calling_gatk1/variant_calling_gatk1/

Break...

4. Resources and tools

- GATK resources bundle: collection of files for GATK based analysis working with human sequencing data.
- <u>ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg38</u>

1000G_omni2.5.hg38.vcf.gz 1000G_phase1.snps.high_confidence.hg38.vcf.gz Axiom_Exome_Plus.genotypes.all_populations.poly.hg38.vcf.gz dbsnp_146.hg38.vcf.gz hapmap_3.3_grch38_pop_stratified_af.vcf.gz hapmap_3.3.hg38.vcf.gz Homo_sapiens_assembly38.dict Homo_sapiens_assembly38.fasta Homo_sapiens_assembly38.fasta.gz Mills_and_1000G_gold_standard.indels.hg38.vcf.gz

4. Resources and tools

- BWA-MEM index
- bwa index Homo_sapiens_assembly38.fasta

Homo_sapiens_assembly38.fasta Homo_sapiens_assembly38.fasta.amb Homo_sapiens_assembly38.fasta.ann Homo_sapiens_assembly38.fasta.bwt Homo_sapiens_assembly38.fasta.pac Homo_sapiens_assembly38.fasta.sa

4. Resources and tools

Tools name	function
FastQC	QC tools for raw sequencing reads
MultiQC	QC report aggregator (generates an HTML report)
GATK	Set of tools for variant calling
Picard	A command line tool to analysis and manipulate sequencing files
Samtools	Suite of tools for interacting with mapped sequencing reads (SAM/BAM/CRAM format)
BCFtools	Suite of tools for interacting with variant data (VCF/BCF formats)

4. Genetic variant resources

- dbSNP
 - An archive of genetic variations contains ~700 million variants
 - ~90% have a recorded population frequency
- gnomAD
 - Aggregation of variants derived from re-analysis of >125k WES and WGS
- ClinVar
 - Aggregates genetic variations and its relationships with phenotypes
- UCSC genome browser
- UniProt

4. Help

- Tool documentation
- GATK forum
- Online resources (e.g. Biostar)
- GitHub for technical issues/discussions

