scRNA-seq Integration and

Differential Expression
Workshop

Working with treatment versus control data



Learning Outcomes

* Understand and get comfortable using various integration strategies

* Understand all DE functions offered by Seurat and when to use them:
FindMarkers(), FindConservedMarkers(), and FindAllMarkers()

* Learn how to use DE tools meant for bulk data (e.g. DESeg2 and limma)
for single cell ‘pseudobulk’ data, and understand why you might
choose this approach

* Learn different ways to visualise DEGs using both in-built Seurat
functions and external packages (pheatmap)



Software and Package Requirements

* R(v4.3.0)
e RStudio

R packages:

* Seurat (v5.0.1)

* DESeqg2 (v1.42.1)

* tidyverse (v2.0.0)

* SeuratData (v0.2.2.9001)
* pheatmap (v1.0.12)

* grid (v4.0.3)



Study Design

* Peripheral Mononuclear Blood Cells (PBMCs) were sequenced
using scRNA-seq from 8 lupus patients. Patients were randomly
splitinto atreatment and control group. The treatment group
received interferon beta.

* Goals of our analysis:

* Integrate data, so that batch effects are removed and
similar cell types across both conditions are grouped
together.

* ldentify upregulated genes in cell-types in a treatment
versus control experiment.

* l|dentify and visualise genes that are differentially
expressed between conditions in a particular cell type

* Conductdifferential expression analysis using an
alternative ‘pseudobulk’ approach
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Lupus

Common Symptoms
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Refresher: General scRNA-seq Workflow

Sequence reads

Generate count matrix

Filter cells using quality metrics

Normalise and Scale Data
” Integration
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Clustering

Marker identification
DE of cell types or genes
between sample groups
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Low quality cells or empty droplets will
have fewer genes and fewer counts

Celldoublets (>1 cell assignhed to a
single barcode) will have significantly
more genes and counts

Dying cells will have higher
mitochondrial contamination

* (<=5%is a good guideline)

We can use violin plots to determine
thresholds for filtering based on these
metrics



Consider Metrics Together: Feature and
Molecule Association Plots

0.93

« Xaxis = number of transcripts/counts per cell
e Y axis =number of unique genes per cell

* Generally, for good quality data, we expect a strong 20000
positive correlation between the number of counts
and unique genes.

Using the line as a guide, we can figure out cells that
are potentially lower quality

* Cellsinthe bottom right quadrant indicates
you’ve captured a few number of genes that are
being sequenced over and over again

e Cellsinthe top left quadrant indicates you’re

capturing many genes but not sequenced deep o =
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Integration — What, When, \Why?

Generate count matrix
Filter cells using quality metrics

Normalise and Scale Data

Clustering

Marker identification
DE of cell types or genes
between sample groups
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Integration — What, When, \Why?

When comparing 2 Experimental Groups (e.g., Treatment/Control,
KO/WT), we want to:

1. ldentify shared cell subpopulations across both datasets.

2. Obtain conserved cell-type markers in both control and stimulated
cells.

3. Compare datasets to reveal cell-type specific responses to
stimulation/condition.

These steps rely on integration—a process that aligns shared cell states
across datasets, enhancing statistical power and enabling these
comparative analyses across multiple scRNA-seq datasets.



Unsupervised Clustering Without Integration
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Clusters are defined by both cell-types and experimental group, complicating downstream analyses



With integration — we can group cells by their shared biology, making
cell type annotation and DE analysis easier
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Integration Summary

* Goal: To align same cell types across conditions.

* Challenge: Aligning cells of similar cell types so that we do not
have clustering downstream due to differences between samples,
conditions, modalities, or batches

* Recommendation: Go through the analysis without integration
first to determine whether integration is necessary!

(see next slide)



Integration Caveats — Decide
first whether its needed

orig.ident
o ;,;,; i aas.
* Integration can sometimes remove ?f_’:» .s:'f:,
biologically relevant signals to artificially g1 #®° > K - Pl
force cells to align. Koots ‘?’Jﬂﬁ” %U N
. N R &
* However, it's not always needed and can be ol org_18 frq“\.‘ ® org 1A
avoided with thoughtful experimental £ 0 '3 o E ® org_1B
. 3 he gty TN,
design. PPt T 3 & “,,,%
.ﬁprg— '-. &,
Example: Ry f;‘q;.;w.,,,i‘ i"o
! NG
« The UMAP on the right shows two organoid I S
samples at the same differentiation stage, Rt L "5""-'."J.",.*ft‘s:“if:fﬂt-:w------'~°'-~"“"'
processed and sequenced together.

10 5 0 5
* Inthis case, integration would likely result in umap_1
the loss of meaningful data, with little to no

benefit. (Unpublished data)




Discussion

Before Integration After Harmony Integration
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How can we determine whether the integration method (shown on the right)
has failed due to genuine cell-type differences between the two datasets?



How do you decide on the integration tool to use?

* The optimal integration method

depends on the CompleXIty Of the Analysis | Open access | Published: 23 December 2021
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tasks

* For more complex data scenarios
other integration methods may be

better such as Seurat CCA



Differential Expression Analyses in Seurat

Sequence reads

Generate count matrix

Filter cells using quality metrics
Normalise and Scale Data
” Integration
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DE of cell types or genes
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In-built Seurat Functions for DE Analysis

findMarkers()

Find DEGs between two clusters
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findConservedMarkers()

Find DEGs between two clusters that are
conserved across experimental groups
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Pseudobulk Analyses — An alternative DE approach

* Combines single-cell counts
and metadata into 'bulk' count
matrices at the sample or
replicate level.

Advantages:

* Uses well-established bulk
RNA-seq tools (DESeq2, edgeR,
limma).

* Enhances statistical robustness
by averaging out single-cell
variability and reducing sparsity.

* Facilitates straightforward DE
analysis with familiar methods.
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https://www.nature.com/articles/s41467-021-25960-2



Why use a pseudobulk approach?

* scRNA-seqg datais notoriously sparse, with a complicated distribution and

substantial heterogeneity across and within cell populations.

* Single-cell DE methods often struggle to identify low-expression DEGs and

overemphasize highly expressed genes.

* They also inflate p-values by treating individual cells as separate samples, reducing

statistical reliability.

* Pseudobulk analysis aggregates cells by sample, preserving cell-type resolution
while allowing for the rigorous statistical testing available in bulk RNA-seq tools 2

leads to more accurate and robust differential expression findings.



le-cell versus pseudo-bulk DE approaches
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Walk Through: Extracting DEG data from Seurat to make custom
visualisations with other packages (pheatmap)
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What comes next?

1. Gene Ontology (GO) Enrichment Analysis

* Perform GO enrichment analysis to identify biological processes, molecular functions, or cellular components

that are significantly enriched in your DEG list.

* Tools like clusterProfiler in R or DAVID can help you analyse and visualize these functional categories.

2. Pathway Analysis

* Usetools such as KEGG, Reactome, or Ingenuity Pathway Analysis (IPA) to map your DEGs onto known

biological pathways. This helps in understanding the broader biological context of gene expression changes.

* GSEA (Gene Set Enrichment Analysis) can also be used to assess whether specific gene sets (e.g., pathways)
are significantly enriched in your data.

3. Validation with External Datasets

» Compare your DEGs with external datasets such as GTEx, TCGA, or publicly available single-cell RNA-seq

datasets to validate your findings or explore how they relate to known disease states, tissues, or conditions.
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